1	$\sin\left(\frac{1}{r}\right)$		5	M1	or use of sine rule or cosine rule to find
	$7^2 - (10 \div 2)^2 (= 24) \text{ or } \frac{\sin(\frac{1}{2}x)}{5} = \frac{\sin 90}{7} \text{ oe or }$				angle (x) of the apex or angle y
	3 /				$\left(=90-\frac{1}{2}x\right)$
	$\cos x = \frac{7^2 + 7^2 - 10^2}{2 \times 7 \times 7} \text{ oe or } \sin\left(\frac{1}{2}x\right) = \frac{5}{7} \text{ oe or } \cos y = \frac{5}{7} \text{ oe}$				
	$\sqrt{7^2 - (10 \div 2)^2}$ (= $\sqrt{24}$ = $2\sqrt{6}$ = 4.898) or			M1	for complete method to find height of triangle or the angle (x) of the apex
	$(x=)2\times\sin^{-1}\left(\frac{5\times\sin 90}{7}\right)$ (= 91.169) oe or				$\cos^{-1}\left(\frac{5}{7}\right) (=44.415)$ and
					$5 \times \tan' 44.415' (= 4.898)$ or
	$(x=)2\times\sin^{-1}\left(\frac{5}{7}\right)$ (= 91.169) oe or				7×sin'44.415' (= 4.898)
					or . (5)
	$(x=)\cos^{-1}\left(\frac{7^2+7^2-10^2}{2\times7\times7}\right)$ (= 91.169) oe or				$\sin^{-1}\left(\frac{5}{7}\right) (=45.584)$ and
	$(x=)2\left(90-\cos^{-1}\left(\frac{5}{7}\right)\right)\left(=2\left(90-44.415\right)=91.169\right)$				$\frac{5}{\tan^4 45.584^4} (= 4.898)$ or
	Allow 5 from correct working				7×cos'45.584'(= 4.898)
	E.g. $6 \times 10 + \frac{(10 \div 2) \times \sqrt{24}}{2} \times 2 \ (= 60 + 10\sqrt{6} = 84.494) \text{ or}$			M1	for method to find the total area of the pentagon allow answers in the range 84.49 – 85
	$5 \times (6+6+\sqrt[4]{24}) (= 60+10\sqrt{6} = 84.494)$ or				
	$\left(\frac{1}{2} \times 7 \times 7 \times \sin^{1} 91.169' + 10 \times 6\right) (= 60 + 10\sqrt{6} = 84.494)$				
•	E.g.			M1	for method to find the number of tins
	$(84.494) \div 16 = 5.28$ or $(60+10\sqrt{6}) \div 16 = 5.28$				required using their area
		6		A1	dep on at least M2
					Total 5 marks

2	$2 \times \pi \times 7 \ (= 43.982 \text{ or } 14\pi)$		3	M1	for finding the circumference of
	or $(2 \times \pi \times 7) \div 2 (= 21.991 \text{ or } 7\pi)$				either the full circle or the length
	or $2 \times \pi \times 9 \ (= 56.548 \text{ or } 18\pi)$				of the arc for either semicircle
	or $(2 \times \pi \times 9) \div 2 (= 28.274 \text{ or } 9\pi)$				
	e.g. "21.991" + "28.274" (= 50.26)			M1	for a method to find the length of
	or " 7π " + " 9π " (= 16π)				the two arcs with intention to add
	or "21.991" + "28.274" + 2 (= 52.26)				
	or " 7π " + " 9π " + 2 (= 52.26)				
	or "21.991" + "28.274" + 2 + 2				
	or " 7π " + " 9π " + 2 + 2				
		54.3		A1	accept 54.2 - 54.3
					Total 3 marks

3	eg $(AD =) \sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)}$ (= 5.07)or 6 sin 50		6	M1	Correct expression for AD ie $AD = \dots$ or $x = 0$
	$2 \times 6\sin 25 \ (=5.07) \text{ or } \frac{6\sin 50}{\sin 65} (=5.07) \text{ oe}$ $eg \ 6 + 6 + \sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos(50)} \text{ or } 12 + \text{``} 5.07\text{''}$			M1	A correct statement of perimeter of triangle <i>OAD</i>
	(=17.0)7 or 17.1) eg (arc BC =) $\frac{50}{360} \times \pi \times 2 \times (6+x)$ oe		_	M1	A correct statement for arc BC (condone missing brackets around
	50		_	M1	(6+x) for this mark only) dep on M3 for a correct equation
	eg 2×"17.1"=12+2x+ $\frac{50}{360}$ × π ×2×(6+x) oe eg 2×17.1-12- $\frac{30}{18}$ π = 2x+ $\frac{5x}{18}$ π			M1	for x isolating terms in x in a correct
	18 18	5.89		A1	equation 5.88 – 5.89
1					Total 6 marks

4	(area $PQS = $) $\frac{1}{2} \times 6.1 \times 3.8 \times \sin P = 9$ or (area $PQRS = $) $6.1 \times 3.8 \times \sin P = 18$ $eg (\sin P = $) $\frac{9}{\frac{1}{2} \times 6.1 \times 3.8} \left(= 0.776 \text{ or } \frac{900}{1159} \right)$ or (sin $P = $) $\frac{18}{6.1 \times 3.8} \left(= 0.776 \text{ or } \frac{900}{1159} \right)$	$\frac{1}{2} \times 6.1 \times SX = 9 \text{ or}$ $(SX =) \frac{9}{\frac{1}{2} \times 6.1} (= 2.95)$ or $6.1 \times SX = 18$ or $(SX =) 18 + 6.1 (= 2.95)$ $(PX^2 =) 3.8^2 - "2.95"^2 (= 5.73)$ or $(PX =) \sqrt{3.8^2 - "2.95"^2} (= 2.39)$		5	M1	correct equation for the area of the triangle or parallelogram or a calculation to find the height of the parallelogram (where X is the point vertically below S on PQ) correct expression for sin P OR for start of Pythagoras method to find length of PX (where X is the point vertically below S on PQ)
	$(P =) \sin^{-1}(0.776)$ (= 50.9) $(QS^2 =)3.8^2 + 6.1^2 - 2 \times 3.8 \times 6.1 \times \cos(50.9)$ (=	$(QX =)6.1 - \sqrt{"5.73"} (= 3.70)$ or $(QX =)6.1 - "2.39" (= 3.70)$ $(QS^2 =)"2.95"^2 + "3.70"^2 (= 22.4)$			M1	for complete method to find angle <i>P</i> OR for method to find length of <i>QX</i> correct expression for <i>QS</i> ²
	22.4) or $(QS =)\sqrt{3.8^2 + 6.1^2 - 2 \times 3.8 \times 6.1 \times \cos("50.9")}$	or $(QS =)\sqrt{2.95^2 + 3.70^2}$	4.74	-	A1	(or <i>QS</i>) accept 4.73 – 4.74
						Total 5 marks

5	eg $2d \times 2d - 4 \times \pi \times (\frac{1}{2}d)^2 (=40)$ oe or $4r \times 4r - 4 \times \pi \times r^2 (=40)$ oe or $x^2 - 4\pi \left(\frac{1}{4}x\right)^2 (=40)$ oe or		4	M1	oe a correct expression or a correct equation for the shaded area (must be in one unknown only) where d = diameter r = radius x = side of large square w = side of square when shape divided into 4
	$w^2 - \pi \left(\frac{1}{2}w\right)^2 (=10)$ oe			2.61	
	$d = \sqrt{\frac{40}{4-\pi}} $ (= 6.826) or $2d = \sqrt{\frac{160}{4-\pi}}$ (= 13.652) oe			M1	oe a correct expression for d or $2d$ or r or $4r$ or x or w
	$r = \sqrt{\frac{40}{16 - 4\pi}}$ (3.413) or $4r = \sqrt{\frac{640}{16 - 4\pi}}$ (=13.652) oe				
	$x = \sqrt{\frac{40}{1 - 0.25\pi}}$ (13.652) or $w = \sqrt{\frac{10}{1 - 0.25\pi}}$ (= 6.826) oe				
	(perimeter =) 8 × "6.826" (8 × diameter(or side of small square when divided)) or			M1ft	dep on first M1 For substituting values into a calculation for the perimeter use of their r , d , x , w
	16 × "3.413" (16 × radius) oe				
	or				
	4 × "13.652"(4 × side of square)				
		54.6		A1	54.4 - 54.7
					Total 4 marks

6	(2x+3)(x-1) < 75		5	B1	For writing the correct inequality sign with a correct calculation or correct value – this could be initially or saying that $x < 6$ at the end
	$2x^2 + x - 78 < 0$			M1	rearranged to form correct quadratic < 0 (allow = 0 or other incorrect inequality sign) oe
	$\mathbf{or} \ x = \frac{-1 \pm \sqrt{(1)^2 - (4 \times 2 \times -78)}}{2 \times 2}$ $\mathbf{or} \ 2 \left(\frac{1}{x + \frac{1}{4}} \right)^2 - \frac{1}{4} - 78 = 0$			M1	first step to find critical values from the correct quadratic
		x = 6		A1	x = 6 identified as critical value, ignore -6.5 if given
		1 < x < 6		A1	correct inequality
					Total 5 marks